Search results for " ammonium tartrate"
showing 5 items of 5 documents
EXPOSURE OF Gd2O3-ALANINE AND Gd2O3-AMMONIUM TARTRATE ESR DOSIMETERS TO THERMAL NEUTRONS: EXPERIMENTS AND MONTE CARLO SIMULATIONS
2008
ESR spectroscopy for analyzing the spatial distribution of free radicals in ammonium tartrate
2013
RADICAL DISTRIBUTIONS IN AMMONIUM TARTRATE SINGLE CRYSTALS EXPOSED TO PHOTON AND NEUTRON BEAMS
2014
The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these …
Determination of New Radical Species in Ammonium Tartrate Dosimeters by CW- and Pulsed-EPR Techniques
2015
Samples of ammonium tartrate irradiated with doses of about 0.1–1 kGy by different beams of ionizing radiation (60Co–γ, 19 MeV protons and 62 MeV per nucleon carbon ions) were studied by continuous-wave electron paramagnetic resonance (cw-EPR) and by pulse-EPR techniques. Careful analysis of the cw-EPR and of the echo-detected EPR spectra allowed the identification of a second radical in the system besides the already known radical formed at high temperature by an hydrogen elimination at C(2) position [M. Brustolon et al., Res. Chem. Int 4:359, 1996]. The spectrum of the radical is compatible with that of a radical obtained by hydroxyl elimination.
ESR RESPONSE TO 60 CO-RAYS OF AMMONIUM TARTRATE PELLETS USING GD2O3 AS ADDITIVE.
2007
This work presents experimental results regarding a new ammonium tartrate blend for ESR dosimetry, with a higher sensitivity and a lower lowest detectable dose (LDD) to 60 Co -rays than the recently used pure ammonium tartrate. The blend composed by ammonium tartrate and gadolinium-oxide (Gd2 O3 ) shows a greater sensitivity (∼2 times) and a smaller LDD than ammonium tartrate. The increased sensitivity was mainly attributed to the great atomic number (Z = 64) of gadolinium, that increases the effective atomic number of the blend; the interaction probability with photons and consequently the radical yield is therefore enhanced. Moreover ammonium tartrate with Gd2 O3 has a linear dose respons…